MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. EN 2.4650 Nickel

2195 aluminum belongs to the aluminum alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.3
34
Fatigue Strength, MPa 190
480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 350
730
Tensile Strength: Ultimate (UTS), MPa 590
1090
Tensile Strength: Yield (Proof), MPa 560
650

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1010
Melting Completion (Liquidus), °C 660
1400
Melting Onset (Solidus), °C 550
1350
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.6
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1470
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
320
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
1030
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 55
36
Strength to Weight: Bending, points 53
28
Thermal Diffusivity, mm2/s 49
3.1
Thermal Shock Resistance, points 26
33

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 3.7 to 4.3
0 to 0.2
Iron (Fe), % 0 to 0.15
0 to 0.7
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0 to 0.4
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0 to 0.1
1.9 to 2.4
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0