MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C61800 Bronze

2195 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.3
26
Fatigue Strength, MPa 190
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 350
310
Tensile Strength: Ultimate (UTS), MPa 590
740
Tensile Strength: Yield (Proof), MPa 560
310

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 660
1050
Melting Onset (Solidus), °C 550
1040
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
13
Electrical Conductivity: Equal Weight (Specific), % IACS 100
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
28
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.6
3.1
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1470
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
25
Strength to Weight: Bending, points 53
22
Thermal Diffusivity, mm2/s 49
18
Thermal Shock Resistance, points 26
26

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
8.5 to 11
Copper (Cu), % 3.7 to 4.3
86.9 to 91
Iron (Fe), % 0 to 0.15
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Silicon (Si), % 0 to 0.12
0 to 0.1
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.020
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0
0 to 0.5