MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C66200 Brass

2195 aluminum belongs to the aluminum alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
110
Elongation at Break, % 9.3
8.0 to 15
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
42
Shear Strength, MPa 350
270 to 300
Tensile Strength: Ultimate (UTS), MPa 590
450 to 520
Tensile Strength: Yield (Proof), MPa 560
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
1070
Melting Onset (Solidus), °C 550
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
35
Electrical Conductivity: Equal Weight (Specific), % IACS 100
36

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 8.6
2.7
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1470
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
760 to 1030
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
14 to 17
Strength to Weight: Bending, points 53
15 to 16
Thermal Diffusivity, mm2/s 49
45
Thermal Shock Resistance, points 26
16 to 18

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Copper (Cu), % 3.7 to 4.3
86.6 to 91
Iron (Fe), % 0 to 0.15
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0
0.3 to 1.0
Phosphorus (P), % 0
0.050 to 0.2
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
6.5 to 12.9
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0
0 to 0.5