MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C72700 Copper-nickel

2195 aluminum belongs to the aluminum alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.3
4.0 to 36
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 350
310 to 620
Tensile Strength: Ultimate (UTS), MPa 590
460 to 1070
Tensile Strength: Yield (Proof), MPa 560
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 210
200
Melting Completion (Liquidus), °C 660
1100
Melting Onset (Solidus), °C 550
930
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 130
54
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.6
4.0
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1470
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
1420 to 4770
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
14 to 34
Strength to Weight: Bending, points 53
15 to 26
Thermal Diffusivity, mm2/s 49
16
Thermal Shock Resistance, points 26
16 to 38

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Copper (Cu), % 3.7 to 4.3
82.1 to 86
Iron (Fe), % 0 to 0.15
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0 to 0.15
Manganese (Mn), % 0 to 0.25
0.050 to 0.3
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Tin (Sn), % 0
5.5 to 6.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0
0 to 0.3