MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C82500 Copper

2195 aluminum belongs to the aluminum alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 9.3
1.0 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
45
Tensile Strength: Ultimate (UTS), MPa 590
550 to 1100
Tensile Strength: Yield (Proof), MPa 560
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 210
280
Melting Completion (Liquidus), °C 660
980
Melting Onset (Solidus), °C 550
860
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
20
Electrical Conductivity: Equal Weight (Specific), % IACS 100
21

Otherwise Unclassified Properties

Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.6
10
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1470
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
400 to 4000
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
18 to 35
Strength to Weight: Bending, points 53
17 to 27
Thermal Diffusivity, mm2/s 49
38
Thermal Shock Resistance, points 26
19 to 38

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 3.7 to 4.3
95.3 to 97.8
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.12
0.2 to 0.35
Silver (Ag), % 0.25 to 0.6
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.1
0 to 0.12
Zinc (Zn), % 0 to 0.25
0 to 0.1
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0
0 to 0.5