MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. C96300 Copper-nickel

2195 aluminum belongs to the aluminum alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
130
Elongation at Break, % 9.3
11
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
49
Tensile Strength: Ultimate (UTS), MPa 590
580
Tensile Strength: Yield (Proof), MPa 560
430

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 210
240
Melting Completion (Liquidus), °C 660
1200
Melting Onset (Solidus), °C 550
1150
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
37
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
42
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.6
5.1
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 1470
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
59
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
720
Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 55
18
Strength to Weight: Bending, points 53
17
Thermal Diffusivity, mm2/s 49
10
Thermal Shock Resistance, points 26
20

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.15
Copper (Cu), % 3.7 to 4.3
72.3 to 80.8
Iron (Fe), % 0 to 0.15
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.25 to 1.5
Nickel (Ni), % 0
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0
0 to 0.5