MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. N06920 Nickel

2195 aluminum belongs to the aluminum alloys classification, while N06920 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.3
39
Fatigue Strength, MPa 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
82
Shear Strength, MPa 350
500
Tensile Strength: Ultimate (UTS), MPa 590
730
Tensile Strength: Yield (Proof), MPa 560
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 660
1500
Melting Onset (Solidus), °C 550
1440
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 8.6
9.4
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1470
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
230
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 55
24
Strength to Weight: Bending, points 53
21
Thermal Diffusivity, mm2/s 49
2.8
Thermal Shock Resistance, points 26
19

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
17 to 20
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0