MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. N07750 Nickel

2195 aluminum belongs to the aluminum alloys classification, while N07750 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
25
Fatigue Strength, MPa 190
520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 350
770
Tensile Strength: Ultimate (UTS), MPa 590
1200
Tensile Strength: Yield (Proof), MPa 560
820

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
960
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.6
10
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1470
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
270
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 55
40
Strength to Weight: Bending, points 53
30
Thermal Diffusivity, mm2/s 49
3.3
Thermal Shock Resistance, points 26
36

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.7 to 4.3
0 to 0.5
Iron (Fe), % 0 to 0.15
5.0 to 9.0
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
2.3 to 2.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0