MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. R30556 Alloy

2195 aluminum belongs to the aluminum alloys classification, while R30556 alloy belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.3
45
Fatigue Strength, MPa 190
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 350
550
Tensile Strength: Ultimate (UTS), MPa 590
780
Tensile Strength: Yield (Proof), MPa 560
350

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 900
450
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
70
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.6
8.7
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1470
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
290
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 55
26
Strength to Weight: Bending, points 53
22
Thermal Diffusivity, mm2/s 49
2.9
Thermal Shock Resistance, points 26
18

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
21 to 23
Cobalt (Co), % 0
16 to 21
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0.2 to 0.8
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0 to 0.25
0.0010 to 0.1
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0