MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. S31266 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while S31266 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is S31266 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.3
40
Fatigue Strength, MPa 190
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 350
590
Tensile Strength: Ultimate (UTS), MPa 590
860
Tensile Strength: Yield (Proof), MPa 560
470

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 660
1470
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
6.5
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 1470
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
290
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 55
29
Strength to Weight: Bending, points 53
24
Thermal Diffusivity, mm2/s 49
3.1
Thermal Shock Resistance, points 26
18

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 3.7 to 4.3
1.0 to 2.5
Iron (Fe), % 0 to 0.15
34.1 to 46
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
2.0 to 4.0
Molybdenum (Mo), % 0
5.2 to 6.2
Nickel (Ni), % 0
21 to 24
Nitrogen (N), % 0
0.35 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0