MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. S32304 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while S32304 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.3
28
Fatigue Strength, MPa 190
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
79
Shear Strength, MPa 350
440
Tensile Strength: Ultimate (UTS), MPa 590
670
Tensile Strength: Yield (Proof), MPa 560
460

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
1050
Melting Completion (Liquidus), °C 660
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
14
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.8
Embodied Energy, MJ/kg 160
40
Embodied Water, L/kg 1470
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
24
Strength to Weight: Bending, points 53
22
Thermal Diffusivity, mm2/s 49
4.0
Thermal Shock Resistance, points 26
18

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24.5
Copper (Cu), % 3.7 to 4.3
0.050 to 0.6
Iron (Fe), % 0 to 0.15
65 to 75.4
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.5
Molybdenum (Mo), % 0
0.050 to 0.6
Nickel (Ni), % 0
3.0 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0