MakeItFrom.com
Menu (ESC)

2195 Aluminum vs. S40920 Stainless Steel

2195 aluminum belongs to the aluminum alloys classification, while S40920 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2195 aluminum and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.3
22
Fatigue Strength, MPa 190
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 350
270
Tensile Strength: Ultimate (UTS), MPa 590
430
Tensile Strength: Yield (Proof), MPa 560
190

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 210
710
Melting Completion (Liquidus), °C 660
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 130
26
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
6.5
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.6
2.0
Embodied Energy, MJ/kg 160
28
Embodied Water, L/kg 1470
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 54
78
Resilience: Unit (Modulus of Resilience), kJ/m3 2290
97
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 55
15
Strength to Weight: Bending, points 53
16
Thermal Diffusivity, mm2/s 49
6.9
Thermal Shock Resistance, points 26
15

Alloy Composition

Aluminum (Al), % 91.9 to 94.9
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 3.7 to 4.3
0
Iron (Fe), % 0 to 0.15
85.1 to 89.4
Lithium (Li), % 0.8 to 1.2
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0.15 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.080 to 0.16
0
Residuals, % 0 to 0.15
0