MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. 5082 Aluminum

Both 2218 aluminum and 5082 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
67
Elongation at Break, % 6.8 to 10
1.1
Fatigue Strength, MPa 110
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 210 to 250
210 to 230
Tensile Strength: Ultimate (UTS), MPa 330 to 430
380 to 400
Tensile Strength: Yield (Proof), MPa 260 to 310
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 510
560
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.2
8.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
670 to 870
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 30 to 39
39 to 41
Strength to Weight: Bending, points 34 to 41
43 to 45
Thermal Diffusivity, mm2/s 52
54
Thermal Shock Resistance, points 15 to 19
17 to 18

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
93.5 to 96
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 3.5 to 4.5
0 to 0.15
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 1.2 to 1.8
4.0 to 5.0
Manganese (Mn), % 0 to 0.2
0 to 0.15
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15