MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. 535.0 Aluminum

Both 2218 aluminum and 535.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
70
Elastic (Young's, Tensile) Modulus, GPa 73
67
Elongation at Break, % 6.8 to 10
10
Fatigue Strength, MPa 110
70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Shear Strength, MPa 210 to 250
190
Tensile Strength: Ultimate (UTS), MPa 330 to 430
270
Tensile Strength: Yield (Proof), MPa 260 to 310
140

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 140
100
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
79

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
24
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 30 to 39
28
Strength to Weight: Bending, points 34 to 41
35
Thermal Diffusivity, mm2/s 52
42
Thermal Shock Resistance, points 15 to 19
12

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.15
Magnesium (Mg), % 1.2 to 1.8
6.2 to 7.5
Manganese (Mn), % 0 to 0.2
0.1 to 0.25
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0 to 0.15
Titanium (Ti), % 0
0.1 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.15