MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. 6262 Aluminum

Both 2218 aluminum and 6262 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
68
Elongation at Break, % 6.8 to 10
4.6 to 10
Fatigue Strength, MPa 110
90 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 210 to 250
170 to 240
Tensile Strength: Ultimate (UTS), MPa 330 to 430
290 to 390
Tensile Strength: Yield (Proof), MPa 260 to 310
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 510
580
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 140
170
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
44
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.1
2.8
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
530 to 940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
48
Strength to Weight: Axial, points 30 to 39
29 to 39
Strength to Weight: Bending, points 34 to 41
35 to 42
Thermal Diffusivity, mm2/s 52
69
Thermal Shock Resistance, points 15 to 19
13 to 18

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Chromium (Cr), % 0 to 0.1
0.040 to 0.14
Copper (Cu), % 3.5 to 4.5
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 1.2 to 1.8
0.8 to 1.2
Manganese (Mn), % 0 to 0.2
0 to 0.15
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15