MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. ACI-ASTM CH20 Steel

2218 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.8 to 10
38
Fatigue Strength, MPa 110
290
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 330 to 430
610
Tensile Strength: Yield (Proof), MPa 260 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
20
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1130
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
200
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 30 to 39
22
Strength to Weight: Bending, points 34 to 41
21
Thermal Diffusivity, mm2/s 52
3.7
Thermal Shock Resistance, points 15 to 19
15

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
22 to 26
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
54.7 to 66
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 1.7 to 2.3
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0