MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. ACI-ASTM CN7MS Steel

2218 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CN7MS steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is ACI-ASTM CN7MS steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
160
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 6.8 to 10
39
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 330 to 430
540
Tensile Strength: Yield (Proof), MPa 260 to 310
230

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 220
1040
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 510
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
12
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
28
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1130
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
170
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 30 to 39
19
Strength to Weight: Bending, points 34 to 41
19
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 15 to 19
13

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 3.5 to 4.5
1.5 to 2.0
Iron (Fe), % 0 to 1.0
45.4 to 53.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 1.7 to 2.3
22 to 25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.9
2.5 to 3.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0