MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. ASTM A372 Grade H Steel

2218 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade H steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is ASTM A372 grade H steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
200 to 280
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
20 to 22
Fatigue Strength, MPa 110
310 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 210 to 250
410 to 570
Tensile Strength: Ultimate (UTS), MPa 330 to 430
650 to 910
Tensile Strength: Yield (Proof), MPa 260 to 310
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1130
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
500 to 810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 30 to 39
23 to 32
Strength to Weight: Bending, points 34 to 41
21 to 27
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 15 to 19
19 to 27

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0 to 0.1
0.4 to 0.65
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
97.3 to 98.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 1.7 to 2.3
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.9
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants