MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. EN 1.0453 Steel

2218 aluminum belongs to the aluminum alloys classification, while EN 1.0453 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is EN 1.0453 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
140
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
26
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 210 to 250
320
Tensile Strength: Ultimate (UTS), MPa 330 to 430
490
Tensile Strength: Yield (Proof), MPa 260 to 310
300

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
49
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1130
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
110
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 30 to 39
17
Strength to Weight: Bending, points 34 to 41
18
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 15 to 19
15

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 1.0
96.9 to 99.38
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 1.7 to 2.3
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0