MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. EN 1.0490 Steel

2218 aluminum belongs to the aluminum alloys classification, while EN 1.0490 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is EN 1.0490 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
130
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
26
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 210 to 250
280
Tensile Strength: Ultimate (UTS), MPa 330 to 430
440
Tensile Strength: Yield (Proof), MPa 260 to 310
280

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
47
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.4
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
100
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
210
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 30 to 39
16
Strength to Weight: Bending, points 34 to 41
16
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 15 to 19
14

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0 to 0.015
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0 to 0.35
Copper (Cu), % 3.5 to 4.5
0 to 0.6
Iron (Fe), % 0 to 1.0
96 to 99.55
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 1.7 to 2.3
0 to 0.35
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.9
0 to 0.45
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.070
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0