MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. EN 1.7767 Steel

2218 aluminum belongs to the aluminum alloys classification, while EN 1.7767 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
20
Fatigue Strength, MPa 110
320 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 210 to 250
420 to 430
Tensile Strength: Ultimate (UTS), MPa 330 to 430
670 to 690
Tensile Strength: Yield (Proof), MPa 260 to 310
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
480
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
40
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.5
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1130
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 30 to 39
24
Strength to Weight: Bending, points 34 to 41
22
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 15 to 19
19 to 20

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0 to 0.1
2.8 to 3.3
Copper (Cu), % 3.5 to 4.5
0 to 0.25
Iron (Fe), % 0 to 1.0
93.8 to 95.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.7 to 2.3
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.9
0 to 0.15
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0