MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. EN 1.8152 Steel

2218 aluminum belongs to the aluminum alloys classification, while EN 1.8152 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is EN 1.8152 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 330 to 430
660 to 2010

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
410
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
47
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.2
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1130
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 30 to 39
24 to 72
Strength to Weight: Bending, points 34 to 41
22 to 46
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 15 to 19
20 to 60

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0.51 to 0.59
Chromium (Cr), % 0 to 0.1
0.5 to 0.8
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
96 to 97.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.5 to 0.8
Nickel (Ni), % 1.7 to 2.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.9
1.2 to 1.6
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0