MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. EN 2.4815 Cast Nickel

2218 aluminum belongs to the aluminum alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
3.4
Fatigue Strength, MPa 110
89
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 330 to 430
460
Tensile Strength: Yield (Proof), MPa 260 to 310
220

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 510
1450
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 22
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
47
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
7.9
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1130
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
13
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 30 to 39
15
Strength to Weight: Bending, points 34 to 41
16
Thermal Diffusivity, mm2/s 52
6.4
Thermal Shock Resistance, points 15 to 19
17

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0 to 0.1
12 to 18
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
9.8 to 28.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 1.7 to 2.3
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.9
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0