MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. Grade VDSiCrV Steel

2218 aluminum belongs to the aluminum alloys classification, while grade VDSiCrV steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is grade VDSiCrV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
630
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 330 to 430
2100

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
420
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
47
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1130
50

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 30 to 39
75
Strength to Weight: Bending, points 34 to 41
47
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 15 to 19
63

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Carbon (C), % 0
0.5 to 0.7
Chromium (Cr), % 0 to 0.1
0.5 to 1.0
Copper (Cu), % 3.5 to 4.5
0 to 0.060
Iron (Fe), % 0 to 1.0
96.1 to 97.8
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0.4 to 0.9
Nickel (Ni), % 1.7 to 2.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.9
1.2 to 1.7
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0.1 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0