MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. Nickel 80A

2218 aluminum belongs to the aluminum alloys classification, while nickel 80A belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is nickel 80A.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 6.8 to 10
22
Fatigue Strength, MPa 110
430
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 210 to 250
660
Tensile Strength: Ultimate (UTS), MPa 330 to 430
1040
Tensile Strength: Yield (Proof), MPa 260 to 310
710

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 510
1310
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
210
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
1300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 30 to 39
35
Strength to Weight: Bending, points 34 to 41
27
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 15 to 19
31

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0.5 to 1.8
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
18 to 21
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
0 to 3.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 1.7 to 2.3
69.4 to 79.7
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0