MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. Titanium 6-6-2

2218 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
120
Elongation at Break, % 6.8 to 10
6.7 to 9.0
Fatigue Strength, MPa 110
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
44
Shear Strength, MPa 210 to 250
670 to 800
Tensile Strength: Ultimate (UTS), MPa 330 to 430
1140 to 1370
Tensile Strength: Yield (Proof), MPa 260 to 310
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 220
310
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 870
540
Thermal Conductivity, W/m-K 140
5.5
Thermal Expansion, µm/m-K 22
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
40
Density, g/cm3 3.1
4.8
Embodied Carbon, kg CO2/kg material 8.2
29
Embodied Energy, MJ/kg 150
470
Embodied Water, L/kg 1130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
34
Strength to Weight: Axial, points 30 to 39
66 to 79
Strength to Weight: Bending, points 34 to 41
50 to 57
Thermal Diffusivity, mm2/s 52
2.1
Thermal Shock Resistance, points 15 to 19
75 to 90

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 1.0
0.35 to 1.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nickel (Ni), % 1.7 to 2.3
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.9
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.4