MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. C42200 Brass

2218 aluminum belongs to the aluminum alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 6.8 to 10
2.0 to 46
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 210 to 250
210 to 350
Tensile Strength: Ultimate (UTS), MPa 330 to 430
300 to 610
Tensile Strength: Yield (Proof), MPa 260 to 310
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 510
1020
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
31
Electrical Conductivity: Equal Weight (Specific), % IACS 110
32

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 30 to 39
9.5 to 19
Strength to Weight: Bending, points 34 to 41
11 to 18
Thermal Diffusivity, mm2/s 52
39
Thermal Shock Resistance, points 15 to 19
10 to 21

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
86 to 89
Iron (Fe), % 0 to 1.0
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.7 to 2.3
0
Phosphorus (P), % 0
0 to 0.35
Silicon (Si), % 0 to 0.9
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0 to 0.25
8.7 to 13.2
Residuals, % 0
0 to 0.5