MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. C44400 Brass

2218 aluminum belongs to the aluminum alloys classification, while C44400 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is C44400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 330 to 430
350
Tensile Strength: Yield (Proof), MPa 260 to 310
120

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 220
140
Melting Completion (Liquidus), °C 640
940
Melting Onset (Solidus), °C 510
900
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
110
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
25
Electrical Conductivity: Equal Weight (Specific), % IACS 110
27

Otherwise Unclassified Properties

Base Metal Price, % relative 11
26
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
2.8
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
65
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 30 to 39
12
Strength to Weight: Bending, points 34 to 41
13
Thermal Diffusivity, mm2/s 52
35
Thermal Shock Resistance, points 15 to 19
12

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Antimony (Sb), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
70 to 73
Iron (Fe), % 0 to 1.0
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0
Tin (Sn), % 0
0.9 to 1.2
Zinc (Zn), % 0 to 0.25
25.2 to 29.1
Residuals, % 0
0 to 0.4