MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. C46400 Brass

2218 aluminum belongs to the aluminum alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
100
Elongation at Break, % 6.8 to 10
17 to 40
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Shear Strength, MPa 210 to 250
270 to 310
Tensile Strength: Ultimate (UTS), MPa 330 to 430
400 to 500
Tensile Strength: Yield (Proof), MPa 260 to 310
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 220
120
Melting Completion (Liquidus), °C 640
900
Melting Onset (Solidus), °C 510
890
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
29

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
120 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 30 to 39
14 to 17
Strength to Weight: Bending, points 34 to 41
15 to 17
Thermal Diffusivity, mm2/s 52
38
Thermal Shock Resistance, points 15 to 19
13 to 16

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
59 to 62
Iron (Fe), % 0 to 1.0
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0 to 0.25
36.3 to 40.5
Residuals, % 0
0 to 0.4