MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. C87500 Brass

2218 aluminum belongs to the aluminum alloys classification, while C87500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is C87500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 6.8 to 10
18
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 330 to 430
460
Tensile Strength: Yield (Proof), MPa 260 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 510
820
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 140
28
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
67
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
160
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 45
19
Strength to Weight: Axial, points 30 to 39
16
Strength to Weight: Bending, points 34 to 41
16
Thermal Diffusivity, mm2/s 52
8.3
Thermal Shock Resistance, points 15 to 19
17

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0 to 0.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
79 to 85
Iron (Fe), % 0 to 1.0
0
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
3.0 to 5.0
Zinc (Zn), % 0 to 0.25
12 to 16
Residuals, % 0
0 to 0.5