MakeItFrom.com
Menu (ESC)

2218 Aluminum vs. C90200 Bronze

2218 aluminum belongs to the aluminum alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2218 aluminum and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 110
70
Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 6.8 to 10
30
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
41
Tensile Strength: Ultimate (UTS), MPa 330 to 430
260
Tensile Strength: Yield (Proof), MPa 260 to 310
110

Thermal Properties

Latent Heat of Fusion, J/g 390
200
Maximum Temperature: Mechanical, °C 220
180
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 510
880
Specific Heat Capacity, J/kg-K 870
370
Thermal Conductivity, W/m-K 140
62
Thermal Expansion, µm/m-K 22
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.2
3.3
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 31
63
Resilience: Unit (Modulus of Resilience), kJ/m3 450 to 650
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 30 to 39
8.3
Strength to Weight: Bending, points 34 to 41
10
Thermal Diffusivity, mm2/s 52
19
Thermal Shock Resistance, points 15 to 19
9.5

Alloy Composition

Aluminum (Al), % 88.8 to 93.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
91 to 94
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0 to 0.2
0
Nickel (Ni), % 1.7 to 2.3
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.9
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Residuals, % 0
0 to 0.6