MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. 4145 Aluminum

Both 2219 aluminum and 4145 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is 4145 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 2.2 to 20
2.2
Fatigue Strength, MPa 90 to 130
48
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Shear Strength, MPa 110 to 280
69
Tensile Strength: Ultimate (UTS), MPa 180 to 480
120
Tensile Strength: Yield (Proof), MPa 88 to 390
68

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 230
160
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 540
520
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 110 to 170
100
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
26
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
84

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 3.1
2.8
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
31
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
50
Strength to Weight: Axial, points 16 to 43
12
Strength to Weight: Bending, points 23 to 44
19
Thermal Diffusivity, mm2/s 42 to 63
42
Thermal Shock Resistance, points 8.2 to 22
5.5

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
83 to 87.4
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 5.8 to 6.8
3.3 to 4.7
Iron (Fe), % 0 to 0.3
0 to 0.8
Magnesium (Mg), % 0 to 0.020
0 to 0.15
Manganese (Mn), % 0.2 to 0.4
0 to 0.15
Silicon (Si), % 0 to 0.2
9.3 to 10.7
Titanium (Ti), % 0.020 to 0.1
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.15