MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. A357.0 Aluminum

Both 2219 aluminum and A357.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 2.2 to 20
3.7
Fatigue Strength, MPa 90 to 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 110 to 280
240
Tensile Strength: Ultimate (UTS), MPa 180 to 480
350
Tensile Strength: Yield (Proof), MPa 88 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 230
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 540
560
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 110 to 170
160
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
40
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
12
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
53
Strength to Weight: Axial, points 16 to 43
38
Strength to Weight: Bending, points 23 to 44
43
Thermal Diffusivity, mm2/s 42 to 63
68
Thermal Shock Resistance, points 8.2 to 22
17

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Copper (Cu), % 5.8 to 6.8
0 to 0.2
Iron (Fe), % 0 to 0.3
0 to 0.2
Magnesium (Mg), % 0 to 0.020
0.4 to 0.7
Manganese (Mn), % 0.2 to 0.4
0 to 0.1
Silicon (Si), % 0 to 0.2
6.5 to 7.5
Titanium (Ti), % 0.020 to 0.1
0.040 to 0.2
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.1
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.15