MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. ACI-ASTM CC50 Steel

2219 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CC50 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is ACI-ASTM CC50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 180 to 480
430

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 540
1370
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 110 to 170
17
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
14
Density, g/cm3 3.1
7.6
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1130
170

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 44
26
Strength to Weight: Axial, points 16 to 43
16
Strength to Weight: Bending, points 23 to 44
17
Thermal Diffusivity, mm2/s 42 to 63
4.5
Thermal Shock Resistance, points 8.2 to 22
14

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 5.8 to 6.8
0
Iron (Fe), % 0 to 0.3
62.9 to 74
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 1.0
Nickel (Ni), % 0
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.020 to 0.1
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0