MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. AWS E90C-B9

2219 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.2 to 20
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 180 to 480
710
Tensile Strength: Yield (Proof), MPa 88 to 390
460

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 110 to 170
25
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1130
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
110
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 16 to 43
25
Strength to Weight: Bending, points 23 to 44
23
Thermal Diffusivity, mm2/s 42 to 63
6.9
Thermal Shock Resistance, points 8.2 to 22
20

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0 to 0.040
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 5.8 to 6.8
0 to 0.2
Iron (Fe), % 0 to 0.3
84.4 to 90.9
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.020 to 0.1
0
Vanadium (V), % 0.050 to 0.15
0.15 to 0.3
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.5