MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. SAE-AISI D3 Steel

2219 aluminum belongs to the aluminum alloys classification, while SAE-AISI D3 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is SAE-AISI D3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 2.2 to 20
9.8 to 15
Fatigue Strength, MPa 90 to 130
310 to 940
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
74
Shear Strength, MPa 110 to 280
470 to 1220
Tensile Strength: Ultimate (UTS), MPa 180 to 480
770 to 2050
Tensile Strength: Yield (Proof), MPa 88 to 390
480 to 1550

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 110 to 170
31
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
8.0
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.2
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1130
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
97 to 180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 16 to 43
28 to 74
Strength to Weight: Bending, points 23 to 44
24 to 47
Thermal Diffusivity, mm2/s 42 to 63
8.3
Thermal Shock Resistance, points 8.2 to 22
23 to 63

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Carbon (C), % 0
2.0 to 2.4
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 5.8 to 6.8
0 to 0.25
Iron (Fe), % 0 to 0.3
80.3 to 87
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.020 to 0.1
0
Tungsten (W), % 0
0 to 1.0
Vanadium (V), % 0.050 to 0.15
0 to 1.0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants