MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. Type 1 Niobium

2219 aluminum belongs to the aluminum alloys classification, while Type 1 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is Type 1 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 2.2 to 20
29
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 27
38
Tensile Strength: Ultimate (UTS), MPa 180 to 480
140
Tensile Strength: Yield (Proof), MPa 88 to 390
82

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Specific Heat Capacity, J/kg-K 870
270
Thermal Conductivity, W/m-K 110 to 170
52
Thermal Expansion, µm/m-K 22
7.3

Otherwise Unclassified Properties

Density, g/cm3 3.1
8.6
Embodied Water, L/kg 1130
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
35
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
32
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 44
18
Strength to Weight: Axial, points 16 to 43
4.6
Strength to Weight: Bending, points 23 to 44
7.1
Thermal Diffusivity, mm2/s 42 to 63
23
Thermal Shock Resistance, points 8.2 to 22
13

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 5.8 to 6.8
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.3
0 to 0.0050
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0
Molybdenum (Mo), % 0
0 to 0.010
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
99.7 to 100
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.015
Silicon (Si), % 0 to 0.2
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0.020 to 0.1
0 to 0.020
Tungsten (W), % 0
0 to 0.030
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0 to 0.020
Residuals, % 0 to 0.15
0