MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. C72900 Copper-nickel

2219 aluminum belongs to the aluminum alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 2.2 to 20
6.0 to 20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Shear Strength, MPa 110 to 280
540 to 630
Tensile Strength: Ultimate (UTS), MPa 180 to 480
870 to 1080
Tensile Strength: Yield (Proof), MPa 88 to 390
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 230
210
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 540
950
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 110 to 170
29
Thermal Expansion, µm/m-K 22
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
39
Density, g/cm3 3.1
8.8
Embodied Carbon, kg CO2/kg material 8.2
4.6
Embodied Energy, MJ/kg 150
72
Embodied Water, L/kg 1130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
2030 to 3490
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 44
19
Strength to Weight: Axial, points 16 to 43
27 to 34
Strength to Weight: Bending, points 23 to 44
23 to 27
Thermal Diffusivity, mm2/s 42 to 63
8.6
Thermal Shock Resistance, points 8.2 to 22
31 to 38

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Copper (Cu), % 5.8 to 6.8
74.1 to 78
Iron (Fe), % 0 to 0.3
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0 to 0.020
0 to 0.15
Manganese (Mn), % 0.2 to 0.4
0 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0.020 to 0.1
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0 to 0.5
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.3