MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. C77600 Nickel Silver

2219 aluminum belongs to the aluminum alloys classification, while C77600 nickel silver belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is C77600 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 2.2 to 20
30
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
43
Shear Strength, MPa 110 to 280
410
Tensile Strength: Ultimate (UTS), MPa 180 to 480
630
Tensile Strength: Yield (Proof), MPa 88 to 390
320

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 230
140
Melting Completion (Liquidus), °C 640
830
Melting Onset (Solidus), °C 540
790
Specific Heat Capacity, J/kg-K 870
390
Thermal Expansion, µm/m-K 22
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
27
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
31

Otherwise Unclassified Properties

Base Metal Price, % relative 11
27
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
60
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
160
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
470
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 44
20
Strength to Weight: Axial, points 16 to 43
22
Strength to Weight: Bending, points 23 to 44
21
Thermal Shock Resistance, points 8.2 to 22
20

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Copper (Cu), % 5.8 to 6.8
42 to 45
Iron (Fe), % 0 to 0.3
0 to 0.2
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 0.25
Nickel (Ni), % 0
12 to 14
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0.020 to 0.1
0
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
39.7 to 46
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.5