MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. N07776 Nickel

2219 aluminum belongs to the aluminum alloys classification, while N07776 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.2 to 20
39
Fatigue Strength, MPa 90 to 130
220
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 27
79
Shear Strength, MPa 110 to 280
470
Tensile Strength: Ultimate (UTS), MPa 180 to 480
700
Tensile Strength: Yield (Proof), MPa 88 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 230
970
Melting Completion (Liquidus), °C 640
1550
Melting Onset (Solidus), °C 540
1500
Specific Heat Capacity, J/kg-K 870
430
Thermal Expansion, µm/m-K 22
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
85
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.2
15
Embodied Energy, MJ/kg 150
210
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
220
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
23
Strength to Weight: Axial, points 16 to 43
22
Strength to Weight: Bending, points 23 to 44
20
Thermal Shock Resistance, points 8.2 to 22
20

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 5.8 to 6.8
0
Iron (Fe), % 0 to 0.3
0 to 24.5
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.020 to 0.1
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0