MakeItFrom.com
Menu (ESC)

2219 Aluminum vs. S46800 Stainless Steel

2219 aluminum belongs to the aluminum alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2219 aluminum and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 2.2 to 20
25
Fatigue Strength, MPa 90 to 130
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 110 to 280
300
Tensile Strength: Ultimate (UTS), MPa 180 to 480
470
Tensile Strength: Yield (Proof), MPa 88 to 390
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 230
920
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 110 to 170
23
Thermal Expansion, µm/m-K 22
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28 to 44
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 81 to 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.6 to 60
98
Resilience: Unit (Modulus of Resilience), kJ/m3 54 to 1060
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 44
25
Strength to Weight: Axial, points 16 to 43
17
Strength to Weight: Bending, points 23 to 44
18
Thermal Diffusivity, mm2/s 42 to 63
6.1
Thermal Shock Resistance, points 8.2 to 22
16

Alloy Composition

Aluminum (Al), % 91.5 to 93.8
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 5.8 to 6.8
0
Iron (Fe), % 0 to 0.3
76.5 to 81.8
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0.2 to 0.4
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.020 to 0.1
0.070 to 0.3
Vanadium (V), % 0.050 to 0.15
0
Zinc (Zn), % 0 to 0.1
0
Zirconium (Zr), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0