MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. 6008 Aluminum

Both 2618 aluminum and 6008 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 5.8
9.1 to 17
Fatigue Strength, MPa 110
55 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
120 to 170
Tensile Strength: Ultimate (UTS), MPa 420
200 to 290
Tensile Strength: Yield (Proof), MPa 350
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 550
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 160
190
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
49
Electrical Conductivity: Equal Weight (Specific), % IACS 110
160

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.5
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 850
76 to 360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 40
21 to 29
Strength to Weight: Bending, points 42
28 to 35
Thermal Diffusivity, mm2/s 62
77
Thermal Shock Resistance, points 19
9.0 to 13

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 1.9 to 2.7
0 to 0.3
Iron (Fe), % 0.9 to 1.3
0 to 0.35
Magnesium (Mg), % 1.3 to 1.8
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.3
Nickel (Ni), % 0.9 to 1.2
0
Silicon (Si), % 0.1 to 0.25
0.5 to 0.9
Titanium (Ti), % 0.040 to 0.1
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15