MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. 7108A Aluminum

Both 2618 aluminum and 7108A aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
69
Elongation at Break, % 5.8
11 to 13
Fatigue Strength, MPa 110
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 260
210
Tensile Strength: Ultimate (UTS), MPa 420
350
Tensile Strength: Yield (Proof), MPa 350
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 210
210
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 550
520
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
36
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
10
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 850
610 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
47
Strength to Weight: Axial, points 40
33 to 34
Strength to Weight: Bending, points 42
38
Thermal Diffusivity, mm2/s 62
59
Thermal Shock Resistance, points 19
15 to 16

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
91.6 to 94.4
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 1.9 to 2.7
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0.9 to 1.3
0 to 0.3
Magnesium (Mg), % 1.3 to 1.8
0.7 to 1.5
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0.9 to 1.2
0
Silicon (Si), % 0.1 to 0.25
0 to 0.2
Titanium (Ti), % 0.040 to 0.1
0 to 0.030
Zinc (Zn), % 0 to 0.1
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15