MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. ACI-ASTM CF16F Steel

2618 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF16F steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is ACI-ASTM CF16F steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
150
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
50
Fatigue Strength, MPa 110
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 420
530
Tensile Strength: Yield (Proof), MPa 350
280

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
220
Resilience: Unit (Modulus of Resilience), kJ/m3 850
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 40
19
Strength to Weight: Bending, points 42
19
Thermal Diffusivity, mm2/s 62
4.3
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
61.3 to 72.8
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 1.5
Nickel (Ni), % 0.9 to 1.2
9.0 to 12
Phosphorus (P), % 0
0 to 0.17
Selenium (Se), % 0
0.2 to 0.35
Silicon (Si), % 0.1 to 0.25
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0