MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. ASTM A387 Grade 12 Steel

2618 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 12 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is ASTM A387 grade 12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
140 to 160
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
25
Fatigue Strength, MPa 110
190 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 260
300 to 330
Tensile Strength: Ultimate (UTS), MPa 420
470 to 520
Tensile Strength: Yield (Proof), MPa 350
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 160
44
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.8
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 850
180 to 250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
16 to 18
Strength to Weight: Bending, points 42
17 to 18
Thermal Diffusivity, mm2/s 62
12
Thermal Shock Resistance, points 19
14 to 15

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 1.9 to 2.7
0
Iron (Fe), % 0.9 to 1.3
97 to 98.2
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.6
Nickel (Ni), % 0.9 to 1.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.1 to 0.25
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0