MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. AWS E80C-Ni2

2618 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 420
620
Tensile Strength: Yield (Proof), MPa 350
540

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.3
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
160
Resilience: Unit (Modulus of Resilience), kJ/m3 850
770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
22
Strength to Weight: Bending, points 42
21
Thermal Diffusivity, mm2/s 62
14
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 1.9 to 2.7
0 to 0.35
Iron (Fe), % 0.9 to 1.3
93.8 to 98.3
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0.9 to 1.2
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.1 to 0.25
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0
0 to 0.5