MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. EN 2.4889 Nickel

2618 aluminum belongs to the aluminum alloys classification, while EN 2.4889 nickel belongs to the nickel alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is EN 2.4889 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
39
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 260
490
Tensile Strength: Ultimate (UTS), MPa 420
720
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 210
1200
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 550
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
42
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.9
Embodied Energy, MJ/kg 150
98
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
220
Resilience: Unit (Modulus of Resilience), kJ/m3 850
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
25
Strength to Weight: Bending, points 42
22
Thermal Diffusivity, mm2/s 62
3.4
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0.050 to 0.12
Cerium (Ce), % 0
0.030 to 0.090
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 1.9 to 2.7
0 to 0.3
Iron (Fe), % 0.9 to 1.3
21 to 25
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.2
45 to 50.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.1 to 0.25
2.5 to 3.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0