MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. C84100 Brass

2618 aluminum belongs to the aluminum alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
65
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.8
13
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 420
230
Tensile Strength: Yield (Proof), MPa 350
81

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 210
160
Melting Completion (Liquidus), °C 640
1000
Melting Onset (Solidus), °C 550
810
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 22
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
23
Electrical Conductivity: Equal Weight (Specific), % IACS 110
25

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.3
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
24
Resilience: Unit (Modulus of Resilience), kJ/m3 850
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 40
7.4
Strength to Weight: Bending, points 42
9.7
Thermal Diffusivity, mm2/s 62
33
Thermal Shock Resistance, points 19
7.8

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Copper (Cu), % 1.9 to 2.7
78 to 85
Iron (Fe), % 0.9 to 1.3
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Magnesium (Mg), % 1.3 to 1.8
0
Nickel (Ni), % 0.9 to 1.2
0 to 0.5
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.1 to 0.25
0 to 0.010
Tin (Sn), % 0
1.5 to 4.5
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
12 to 20
Residuals, % 0
0 to 0.5