MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. N06603 Nickel

2618 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 5.8
28
Fatigue Strength, MPa 110
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 260
480
Tensile Strength: Ultimate (UTS), MPa 420
740
Tensile Strength: Yield (Proof), MPa 350
340

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 640
1340
Melting Onset (Solidus), °C 550
1300
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
50
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
170
Resilience: Unit (Modulus of Resilience), kJ/m3 850
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
25
Strength to Weight: Bending, points 42
22
Thermal Diffusivity, mm2/s 62
2.9
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 1.9 to 2.7
0 to 0.5
Iron (Fe), % 0.9 to 1.3
8.0 to 11
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0.9 to 1.2
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0.1 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.040 to 0.1
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 0.1
0.010 to 0.1
Residuals, % 0 to 0.15
0