MakeItFrom.com
Menu (ESC)

2618 Aluminum vs. N08700 Stainless Steel

2618 aluminum belongs to the aluminum alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2618 aluminum and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
170
Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 5.8
32
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 260
410
Tensile Strength: Ultimate (UTS), MPa 420
620
Tensile Strength: Yield (Proof), MPa 350
270

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 160
13
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 37
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.0
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 23
160
Resilience: Unit (Modulus of Resilience), kJ/m3 850
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 40
21
Strength to Weight: Bending, points 42
20
Thermal Diffusivity, mm2/s 62
3.5
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 92.4 to 94.9
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 1.9 to 2.7
0 to 0.5
Iron (Fe), % 0.9 to 1.3
42 to 52.7
Magnesium (Mg), % 1.3 to 1.8
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0.9 to 1.2
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.1 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.040 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0